
Stay Out of
APEX Debt

Scott Spendolini
Vice President, APEX+ Practice

@ViscosityNA

Welcome

 2

@ViscosityNA 3

About Me

@sspendol

scott.spendolini@viscosityna.com

@ViscosityNA

INFRA APPS DATA

 4

About Viscosity: Services

Data
Warehouse

Analytics

Database

Data
Replication &
Virtualization

OCI & AWS

Java & APEX

DevOps

Microservices

PaaS for SaaS

Systems
Integration

POCs

Engineered
Systems

Public Cloud

Bare Metal

x86/SPARC

OCI

AWS

Bare Metal

@ViscosityNA

About Viscosity: APEX
• Offers a wide range of APEX related Services:
– Architecture Design & Reviews
– Security Reviews
– Health Checks
– Education
• On-site, On-line, On-Demand

• Custom & Mentoring

– DevOps
– Curators of APEX-SERT & sumnerAMP

 5 @ViscosityNA

Agenda
• Overview
• Technical Debt in APEX
• Applications
• Infrastructure

• Summary

 6

@ViscosityNA

Memes
• Are (usually) funny
• Are (almost always) true
• Which makes them very effective at conveying a serious

issue while at the same time making people laugh so
that they forget that the serious issue is something that
directly impacts them in a negative way

 7 @ViscosityNA

Overview

 8

@ViscosityNA 9

Technical Debt

@ViscosityNA

Technical Debt
• Technical debt is a concept in software development

that reflects the implied cost of additional rework
caused by choosing an easy solution now instead of
using a better approach that would take longer.
• Technical debt can be compared to monetary debt. If

technical debt is not repaid, it can accumulate
‘interest’, making it harder to implement changes later
on.

 10

https://en.wikipedia.org/wiki/Technical_debt

@ViscosityNA

Causes of Technical Debt
• Insufficient up-front definition
• Business pressures
• Lack of process or understanding
• Tightly-coupled components
• Lack of a test suite
• Lack of documentation
• Lack of collaboration
• Delayed refactoring
• Lack of alignment to standards
• Lack of knowledge
• Lack of ownership
• Poor technological leadership
• Last minute specification changes

 11

https://en.wikipedia.org/wiki/Technical_debt

@ViscosityNA 12

Technical Debt

Project 1 Allocated Timeline

Project 2 Allocated Timeline

Project 1 Actual Timeline

Lost Time Project 2 Allocated TimelineDEBT

@ViscosityNA

Lost Time
• Lost Time causes developers to:
– Get stressed out
– Work longer hours
– Make more mistakes
– Take more shortcuts

 13

“I know this is a bad
idea, but I’ll fix it later.”

@ViscosityNA

Trade Offs
• “Shortcuts” and hard-coded “workarounds” are good

examples of technical debt
– You’re trading a robust solution for a cheaper one and

getting back some time
– Time that you can use for:
• Sleep
• Family

• More Work

• The cheaper, less optimal solution is the debt
– You accumulate debt as projects roll on
– It doesn’t just go away like in the real world

 14

@ViscosityNA 15

Technical Debt

Project 1

Project 2

Project 3

Project 4

Project 5

Project 6

Project 7

Project 8

DEBT

DEBT

DEBT

DEBT

DEBT

DEBT

DEBT

@ViscosityNA 16

Technical Debt

Project 1

Project 2

Project 3

Project 4

Project 5

Project 6

Project 7

Project 8

Project 1
Phase 2

Project 4

Project 1
Phase 3 DEBT

DUMPSTER

@ViscosityNA

Technical Debt in APEX

 17 @ViscosityNA

Technical Debt in APEX
• Applications
– JavaScript

– SQL & PL/SQL
– Plugins

– Data Model
– Documentation
– Components
– User Interface

• Infrastructure
– New Versions
– Patches
– End Users

 18

@ViscosityNA

Applications

 19 @ViscosityNA 20

Javascript

@ViscosityNA

Javascript
• How much Javascript should you include in your APEX

application?
– As little as possible
– And when you do, it should always be in a Dynamic Action

 21 @ViscosityNA

Dynamic Actions
• Dynamic Actions are declarative constructs that allow

developers to easily manipulate client-side
operations
– Change a value of a select list
• If A, then show Item A and hide Item B

• If B, then show Item B and hide Item A

 22

@ViscosityNA

Dynamic Actions
• APEX uses the declarative values of a Dynamic Action

to automatically generate jQuery code

 23

apex.da.initDaEventList = function(){

apex.da.gEventList = [

{"triggeringElementType":"ITEM","triggeringElement":"P1_SELECT","conditionElement":"P1_SELECT"
,"triggeringConditionType":"EQUALS","triggeringExpression":"A","bindType":"bind","bindEventTyp
e":"change","anyActionsFireOnInit":true,actionList:
[{"eventResult":false,"executeOnPageInit":true,"stopExecutionOnError":true,"affectedElementsTy
pe":"ITEM","affectedElements":"P1_B",javascriptFunction:apex.da.show,"attribute01":"N","action
":"NATIVE_SHOW"},
{"eventResult":true,"executeOnPageInit":true,"stopExecutionOnError":true,"affectedElementsType
":"ITEM","affectedElements":"P1_A",javascriptFunction:apex.da.show,"attribute01":"N","action":
"NATIVE_SHOW"},
{"eventResult":false,"executeOnPageInit":true,"stopExecutionOnError":true,"affectedElementsTyp
e":"ITEM","affectedElements":"P1_A",javascriptFunction:apex.da.hide,"attribute01":"N","action"
:"NATIVE_HIDE"},
{"eventResult":true,"executeOnPageInit":true,"stopExecutionOnError":true,"affectedElementsType
":"ITEM","affectedElements":"P1_B",javascriptFunction:apex.da.hide,"attribute01":"N","action":
"NATIVE_HIDE"}]}];

}

@ViscosityNA

Dynamic Actions
• Since APEX generates the actual JavaScript, if the

underlying Javascript libraries were to change -
version or library itself - then the way the Javascript is
generated will also change
– Oracle will do this for you
– You have to do nothing
– You have to know nothing
– Simply upgrade and enjoy your debt-free life

 24

@ViscosityNA

Javascript in DAs
• Sometimes, you have no choice, and need to use

Javascript
• For instance
– Execute PL/SQL asynchronously
– Create an expression

• Any Javascript call should always originate from a DA
– If you need to listen for item or button clicks, use the

corresponding id or class as a trigger

 25 @ViscosityNA

Javascript APIs
• If this is the case, always and only use the APEX

Javascript APIs
– https://docs.oracle.com/en/database/oracle/application-

express/18.2/aexjs/toc.html
– Also available as part of the Oracle APEX API Documentation

• Just like DAs, APEX Javascript APIs encapsulate logic
and insulate you from change
– If jQuery syntax changes, API will accommodate it
– Again, you’ll need to do nothing

 26

@ViscosityNA

Javascript APIs
• Consider the case of gReport
– From Joel Kallman’s blog discussing APEX 5.0:

 27

As Trent Schafer (@trentschafer) noted in his latest blog post, "Reset an
Interactive Report (IR)", there have been numerous customer
discussions and blog posts which show how to directly use the gReport
JavaScript object to manipulate an Interactive Report. The problem?
With the massive rewrite to support multiple Interactive Reports in
Oracle Application Express 5, gReport no longer exists. And as
Trent astutely points out, gReport isn't documented. And that's the
cautionary tale here - if it's not documented, it's not considered
supported or available for use and is subject to change, effectively
without notice. While I appreciate the inventiveness of others to do
amazing things in their applications, and share that knowledge with the
Oracle APEX community, you must be cautious in what you adopt.

https://joelkallman.blogspot.com/2015/02/some-changes-to-be-aware-of-as-oracle.html

@ViscosityNA

Deprecated & Desupported
• If for some reason, you’re still using deprecated and/or

desupported Javascript libraries, you can include them
– Shared Components > UI Attributes > Desktop
– Check either Pre-18.1 or 18.x
– Specifics of what is deprecated and desupported is always

included in the release notes of each APEX release

 28

@ViscosityNA 29

SQL & PL/SQL

@ViscosityNA

Views
• Most - if not all - source for APEX reports should use

views
– Exception for single-table queries

• Complex join & other logic should be encapsulated in
the view
– Makes management much easier - change the view logic, all

APEX reports are impacted
– Add/Remove column - you’re going to have to change APEX

either way

• Views should also be used for data security
– VPD or incorporate security context in the view

 30

@ViscosityNA

PL/SQL
• APEX processes allow you to put blocks of PL/SQL in

your application
– These blocks can be called from a variety of points on the page
– Keep in mind this code is stored in the database as a CLOB

• Each time a process runs, it needs to be fetched,
parsed and then executed
– Which can get expensive if there’s more then a few lines of

code

 31 @ViscosityNA

PL/SQL
• Thus, all PL/SQL blocks should be moved to a  

PL/SQL package and referenced from APEX
– Even small, one line blocks - such as RETURN FALSE - should

be moved to a package
– If the logic changes at some point, no change needs to be

made to the application

• Managing PL/SQL via files is a lot easier than
managing APEX application exports
– Easier to diff, share, update, read, version control, etc.

 32

@ViscosityNA

PL/SQL
• Beware of using any APEX-specific APIs in PL/SQL

packages
– As soon as you do, that package can only be used from APEX

• If you have the need to call that package outside of
APEX, then:
– Pass in all parameters - do not use the “v” function
– Create a wrapper procedure that does the “APEX Stuff”

• It’s perfectly OK to have APEX-specific packages
– Hard to avoid when using things like

APEX_APPLICATION.G_F01, APEX_COLLECTION, etc.

 33 @ViscosityNA

PL/SQL APIs
• APEX contains a robust set of PL/SQL APIs
– Included in the documentation
– Some can even be called from outside of APEX

• These should be studied and used whenever
possible
– Your problem - although interesting - was likely solved years

ago and is now incorporated into an API

• “Knowing is Half the Battle”
– You don’t know what you don’t know
• A stitch in time saves nine
– You’ve got to know when to hold ‘em…

 34

@ViscosityNA

Migrating
• You can use SQL Developer to “migrate” PL/SQL

processes from APEX to a package
– Expand the APEX node
– Right-click the application
– Select “migrate”

• You will get a single package with all of the code
encapsulated in it
– Up to you to manually copy & paste the stubs back in each

process

• Lesson here: be proactive

 35 @ViscosityNA

APEX DML Processes
• Final note: if you can make use of an APEX DML

Process, then do so
– Automatically generated when creating a form
– Declarative way to perform DML
– Automatically has lost update detection
– Anyone can understand the logic

 36

@ViscosityNA 37

Plugins

@ViscosityNA

Plugins
• Plugins are a very cool way to expand the capabilities

of APEX
– Introduced in APEX 4
– All APEX components - reports, charts, items, etc. - are actually

plugins

• Many people will utilize Plugins in their applications
• Few will actually create Plugins
– Difficult to do because of the broad skill set requirements
• APEX, Javascript, CSS, PL/SQL, SQL, etc.

 38

@ViscosityNA

Plugins
• Let’s consider SuperLOV
– Very popular plugin released in 2010
• About 10k downloads to date

– Revised regularly until Dan McGhan joined Oracle in 2013 or so
• Regular Updates ceased due to Dan’s new job

• Others have since taken over development

• Currently no version for APEX 18.2

 39 @ViscosityNA

Plugin Issues
• Developers may not release updated versions at

the same time APEX does
– Almost impossible to do, since APEX does not have a public

beta program

• APEX upgrades may break or disable the plugin
– See the first point

• Developers for one reason or another, may
abandon the plugin entirely
– Leaving you or the community to support it

 40

@ViscosityNA

Plugin Considerations
• In the case of a plugin no longer working, you have two

choices
– Fix it
• Difficult in many cases

– Replace it with native functionality
• Should have an existing plan for this

• Most difficult choice will be to forego APEX
updates b/c of plugin dependencies
– Sacrificing security, functionality, stability for the sake of what a

plugin provides

 41 @ViscosityNA

jQuery Migrate
• If you’re going to upgrade and do have plugs that are

not working correctly, consider enabling jQuery
Migrate
– Shared Components > UI Attributes > Desktop

• Including jQuery Migrate restores deprecated
features and behaviors of jQuery so that old
JavaScript code and jQuery plug-ins will still run properly
with the jQuery version loaded by Application Express.

 42

@ViscosityNA 43

Data Model

@ViscosityNA

Data Model
• Like the foundation of a house, a solid data model

is essential for any well-built application
– Cutting corners may work in the short term
– Important to know how big the house could be up front
• Plan for expansion - even if it’s unlikely

• Sometimes, you’ll inherit someone else’s mess
– Be sure to take the time to rehabilitate it before starting anything

new

 44

@ViscosityNA

Natural vs. Surrogate Keys
• APEX prefers numeric surrogate keys automatically

generated via trigger & sequence
– 12c Identity columns are OK too

• APEX doesn’t care if you disagree with this statement
– It still works best when you adhere to it
– It will work if you don’t - just not as optimally

• GUIDs will work, too
– Harder to work with
– Better if data from multiple systems or tables will be merged,

since data is globally unique

 45 @ViscosityNA

Constraints
• All constraints should be at the database level
– This way, the same business rules are enforced regardless of

the technology

• APEX will automatically set “Item Requires Value”
when a NOT NULL constraint is on a column
• APEX will not interpret check constraints
– Up to the developer to handle these manually in APEX

 46

@ViscosityNA

Table APIs
• Consider creating Table APIs
– API to facilitate DML transactions

• SQL Workshop can do this quickly
– Object Browser > Create > Package > Package with methods

on database table(s)

• Once created, you can modify the code to be less
robust
– Remove Insert or specific columns, for instance

• Simple to build a RESTful interface in front of these so
that other technologies can use the same API

 47 @ViscosityNA 48

Documentation

@ViscosityNA

Documentation
• Documenting an APEX application should be done in

several different places
– Component Comments
– Code Comments
– Technical Documentation
– User Documentation

 49 @ViscosityNA

Component Comments
• Each and every APEX component contains a

Comments field
• Make sure to use it
– This may be the only documentation that you have

• Bonus: you can query this field from the APEX views
– Or build an APEX application that can explore all comments

 50

@ViscosityNA

Code Comments
• Comment your code. Seriously.
– I can’t remember what I did this morning, let alone 2-3 months

ago

• Comments should be useful / meaningful
– More than just a restatement of the name of the procedure
– Also helpful to include a log of major changes
– Version control should do this, but it’s a spot easier to have

comments right in the package

 51 @ViscosityNA 52

Comment Examples

/* procedure to calculate
interest rate */

PROCEDURE calc_payment
 (p_rate IN NUMBER,
 p_terms IN NUMBER
)
RETURN NUMBER
IS
…
END calc_interest;

/* calculates interest
based on amount and terms
in months, looks up
interest rate in INT_RATE
table, and returns a
monthly payment amount */

PROCEDURE calc_payment
 (p_rate IN NUMBER,
 p_terms IN NUMBER
)
RETURN NUMBER
IS
…
END calc_interest;

Bad Good

@ViscosityNA

Technical Documentation
• This is for the developers
– End users should and will never see this
– So make it count

• Document any transaction or flow
– Be sure to call out specific pages, views & PL/SQL packages

used

• Most likely this will be used in an emergency
– So keep it organized, up to date and succinct

 53 @ViscosityNA

User Documentation
• No one writes documentation, so don’t feel bad

about it
– Seriously. You’re not alone.
– You’re wrong, but not alone.

 54

@ViscosityNA 55

Components

@ViscosityNA

Components
• Use APEX components as much as possible
– Do not try to re-invent the wheel

• And more importantly, use them the way they were
intended to be used
– Using a component improperly can lead to security issues as

well as maintenance nightmares

• If needed, adapt your requirements to meet the
specification of APEX components

 56

@ViscosityNA

Components
• Examples of all components:
– https://apex.oracle.com/pls/apex/f?p=42:3000

• If you can’t find something that works from that
selection, then requirements need to be re-thought
so that you can
– This is one of the largest ways to accumulate debt
– A developer is forced by end users to make bad choices,

customize a component outside the intended scope, and
there’s your debt

 57 @ViscosityNA

Reports
• Queries
– Use Views where possible
– Column Names should be defined in APEX
– HTML does not belong in SQL - use column attributes

• Attributes
– Standardize on template choice & attributes
– Consider limiting which options of an IR are available

 58

@ViscosityNA

Forms
• Use the built in DML processes wherever and

whenever possible
– Completely declarative
– No code required
– Automatic lost update detection

• If not possible, consider using table APIs
– Low Code
– Logic can be centralized in a package and re-used, if needed

 59 @ViscosityNA

Items
• Use default naming standard: PX_COL_NAME
– PX = P + Page Number
– COL_NAME = corresponding database column

• Use the grid layout controls to arrange items
– Columns
– Column Span
– New Line

• Application Items should have a standard name
– AI_ITEM_NAME
– G_ITEM_NAME

 60

@ViscosityNA

Shared Components
• Create a page-less application to stored common

shared components
– Authentication Schemes
– Authorization Schemes
– Lists of Values
– Plugins

• When any of these components are needed, add to the
central application and create a subscription
– If anything needs to be changed, easier to do once and push

vs. multiple times in multiple places

 61 @ViscosityNA 62

User Interface

@ViscosityNA

Universal Theme
• Introduced in APEX 5, the Universal Theme is the new

declarative construct to manage an application’s
appearance
– There are no more “themes”
– Universal Theme may as well just be called User Interface

 63 @ViscosityNA

Migrating to Universal Theme
• If you’re using an older numbered theme, it’s time to

upgrade
– All other themes are deprecated in 18.1 and desupported in

18.2

• The more HTML & CSS you’ve added, the more
difficult the transition will be
– Hint: you’re going to want to strip it down and use Theme Roller

and/or new CSS

 64

@ViscosityNA

Migration
• Oracle offers a Universal Theme migration guide here:
– https://apex.oracle.com/pls/apex/f?p=42:2000
– Also part of the Universal Theme Packaged Application

• To simplify it, it’s basically four steps:
– Backup your application
– Add the Universal Theme to your application
– Switch to the Universal Theme
– Clean up the mess

 65 @ViscosityNA

The Mess
• Navigation Menu
– May need to create or transition from tabs

• Navigation Bar
– May not be a list

• Two Levels of Tabs
– Need to convert to one level first

• All Content in One Column
– Change new row/new column attributes
– “Label Column Span” error

 66

@ViscosityNA

Your Mess
• Most, if not all of your customizations, should be

discarded
– Often an emotional decision, as they represent work and

accomplishment
– They will only bog down the Universal Theme

• You can re-apply what you need via Template Options
and CSS overrides
– Much more manageable
– Easier to do once you get the hang of it

 67 @ViscosityNA

Case Study: APEX-SERT
• APEX-SERT was an APEX 4.x application with a 100%

custom theme
– Several CSS override regions on page 0
– Many regions had <style> tags embedded
• In a variety of places

– Lots of manually generated HTML via PL/SQL
– Excessively large number of Global Page components

 68

@ViscosityNA 69 @ViscosityNA

Standards
• When migrating to the Universal Theme, it’s critical to

define component standards
– Which page positions to use for what
– When to use a Modal window and how they behave
– Templates & Template Options for regions, buttons, etc.
– Item Label Position & Options

• Enforce standards by using the APEX views
– Examine each application to ensure that they comply

 70

@ViscosityNA

Stay Inside the Box
• Design to the UT’s supported structures & design

patterns
– If your design does not fit, change it

• Do not modify UT templates
– Make fixes via attributes or CSS

• Use Template Options and  
CSS Overrides
– Often you can achieve what you’re after  

with them and perhaps a small CSS tweak
• Which should be done in Theme Roller

 71 @ViscosityNA

Universal Theme Rules
• Thou shall not edit the HTML in the templates
• Thou shall not use inline styles anywhere
• Thou shall use Theme Roller to modify basic styles
• Thou shall use Theme Options
• Thou shall test thy application in the target resolution of

thy users
• Thou shall steer users towards supported design

patterns and components and smite them should they
digress

 72

@ViscosityNA

Infrastructure

 73 @ViscosityNA 74

New Versions

@ViscosityNA

New Versions
• APEX has adopted the same release cycle as the rest

of the database group
– Smaller, more frequent releases with fewer features
– APEX is on pace for about 2 per year
• Which is way more than the previous pace of 1 per 2+ years

• Releases will be named in the following format:
– YY.VER
• YY = year

• VER = release number

 75 @ViscosityNA

New Versions
• In addition to new features, each new release also

contains:
– Bug fixes
– Security patches

• Thus, it’s critical to keep current to be both more
functional and more secure
• Adhering to all of the recommendations in this

presentation will minimize upgrade issues
– Enabling you to keep more current with fewer issues

 76

@ViscosityNA

Release Notes
• Critical to read the Release Notes
– Shipped as part of the APEX documentation

• Important components:
– Changed Behavior
– Deprecated Features
– Desupported Features

 77 @ViscosityNA

Changed Behavior
• Outlines things that behave differently in the current

APEX release
– Should read and determine if any changes will impact your

environment
– Some line items here will be new features/functionality

 78

@ViscosityNA

Deprecated Features
• Deprecated features are features which Oracle plans

to desupport or remove in a future release of Oracle
Application Express.
– If a feature is related to application metadata or an API, existing

applications can still use the feature, but Oracle strongly
recommends that developers start to modify their applications
as described in this section.

– Use Oracle Application Express Advisor to scan existing
applications for deprecated attributes.

 79 @ViscosityNA

Desupported Features
• Desupported features are no longer available
– If a desupported feature has to do with application metadata or

APIs, then existing applications may not work as they did
previously

– Oracle recommends modifying the application to replace the
feature.

 80

@ViscosityNA 81

Patching

@ViscosityNA

Patching
• Major Releases (5.1, 18.1, 18.2) can be upgraded

from the APEX builds that are publicly available
– https://www.oracle.com/technetwork/developer-tools/apex/

downloads/index.html
– All you need is a free Oracle Developer Community account

• Minor Releases (5.1.1, 5.1.2, etc) can only be
upgraded by downloading the patch from Oracle
Support
– https://support.oracle.com
– No support = No patches

 82

@ViscosityNA 83

With Support

APEX 5.0.0 APEX 5.1.0

APEX 5.1.1

APEX 5.1.2

APEX 18.1.0 APEX 18.2.0

APEX 5.1.3

APEX 5.1.4

APEX 5.0.1

APEX 5.0.2

APEX 5.0.3

APEX 5.0.4

@ViscosityNA 84

Without Support

APEX 5.0.0 APEX 5.1.0

APEX 5.1.1

APEX 5.1.2

APEX 18.1.0 APEX 18.2.0

APEX 5.1.3

APEX 5.1.4

APEX 5.0.1

APEX 5.0.2

APEX 5.0.3

APEX 5.0.4

@ViscosityNA 85

Without Support

APEX 5.0.0

APEX 5.1.1

APEX 5.1.2

APEX 18.1.0 APEX 18.2.0

APEX 5.1.4

APEX 5.0.1

APEX 5.0.2

APEX 5.0.3

APEX 5.0.4

APEX 5.1.3

APEX 5.1.1

@ViscosityNA

Patching
• Be sure to also monitor CPUs from Oracle
– Every once in a while there will be an APEX component

• Goes without saying that all associated database
patches should also be applied
– Same reasoning to keep current applies to the database

 86

@ViscosityNA 87

Utilizing APEX core
components will result in
the most expeditious and

hassle-free upgrade &
patch cycles

@ViscosityNA

Summary

 88

@ViscosityNA

Summary
• Technical Debt is a real thing
– You probably have a ton of it today

• APEX is perfectly capable of adding to your technical
debt
– Particularly when used incorrectly

• For best results - and less debt - use APEX how it
was intended to be used
– Scratch your creative itch elsewhere

 89 @ViscosityNA 90

Recommended Reading

@ViscosityNA 91

Recommended Reading

